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ABSTRACT
Tracking and representation of shape change over time is

of great interest in the field of computational anatomy. We
propose a longitudinal growth model which estimates the dif-
feomorphic flow of a baseline image passing through a se-
ries of time-points that are the observed evolution of the tem-
plate over time. We optimize the full space-time flow for
the sequence of images, providing a linear space representa-
tion of the shape-change via a time-dependent velocity vector
field, thus application of linear techniques becomes straight-
forward. We test our longitudinal growth model on both syn-
thetic and real data-sets and demonstrate flexibility in time-
point spacing, generation of average growth, and robust inter-
polation of missing time-points.

Index Terms— Longitudinal growth, Diffeomorphisms,
Shape analysis, Computational anatomy

1. INTRODUCTION

Computational Anatomy involves developing mathematical
algorithms for quantifying the extraordinary morphological
variability of the human anatomy from 3D images acquired
non-invasively using modalities such as MRI. These algo-
rithms hold great promise for establishing a statistical un-
derstanding of ‘normal’ state, and have tremendous poten-
tial in early detection and treatment of diseases manifested
by structural changes that do not fall within ‘normal’ limits
observed in the population. Several cross-sectional databases
now exist, and recently, databases containing longitudinal im-
ages acquired over time within the same subject have started
to become available. These would enable the development
of anatomical growth curves, that, akin to the growth curves
so familiar for charting paediatric growth using simple mea-
surements such as height and weight, would allow functional
data curves representing evolution of anatomy over time to be
developed and described statistically.
Quantifying shape change over time involves the analysis

of a time-series of images that are sampled from the evolution
of the anatomical state at discrete time-instants. To model
anatomical evolution over time, Miller, Younes and Trouvé

[1, 2] presented a dynamic growth model as the time-flow of
a smooth velocity vector field carrying a known template im-
age through a time series of images representing its evolution
observed over continuous time; this however necessitates a
dense sampling of anatomical evolution be available. Davis
et al [3] have also proposed a kernel regression method to
smoothly interpolate over time the cross-sectional data avail-
able at multiple time-instants.
In this paper, we revisit the longitudinal growth model

framework, and estimate the time-flow of a template image
through a sequence of discrete-time sampled images. This
situation better represents the longitudinal databases being
generated that contain within subject images over time that
are sampled at variable intervals across subjects, and may not
contain the same number of images for all the subjects. We
derive the Euler-Lagrange equation for solving a variational
problem that finds the optimal flow that smoothly fits the en-
tire time-series. This is done in the large deformation dif-
feomorphic metric mapping (LDDMM) algorithm [4] frame-
work, where the transformations for mapping a template im-
age to a target image are modeled as the evolution of a smooth
time-dependent velocity vector field. The integration of the
estimated smooth flow, leads to the resulting transformations
being diffeomorphic, which are smooth and invertible, with
smooth inverse. The velocity space, V , in which the vec-
tor fields for constructing the flow are constrained, is a linear
space and Hilbert, thus linear techniques and concepts can
be applied directly to the velocity fields representing shape
change over time.

2. METHOD

The diffeomorphic transformation connecting a time se-
quence of images is estimated via the basic variational prob-
lem in the space of smooth velocity vector fields V on domain
Ω by minimizing the energy functional:

E(v) =

∫ T

0

‖vt‖
2
V dt + λ

N∑
k=1

‖It0 ◦ φtk,0 − Itk
‖2L2. (1)
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Here, images are scalar functions on domain Ω ⊆ R
d; It0

denotes the template or baseline image, and Itk
are N image

time-points which make up the longitudinal time-sequence.
The space V is Hilbert with inner-product 〈f, g〉V = 〈Lf, Lg〉L2

defined using a differential operator L (see [5] for de-
tails). The evolution of the time-dependant velocity vec-
tor field flow, vt ∈ V , is governed by the differential
equation φ̇0,t = vt (φ0,t), thus for any t ∈ [0, T ] we get
φ0,t = id +

∫ t

0 vτ (φ0,τ ) dτ . Hence, the matching transfor-
mation from baseline to time t = tk is found by integration
of vt from t = 0 to t = tk, giving φ0,tk

.
The minimizer of (1) is found via gradient descent of the

variational gradient,

(∇vE)t = 2vt − 2

N∑
k=1

K
(
1[0,tk] (t) |Dφt,tk

| ×

(It0 ◦ φt,0 − Itk
◦ φt,tk

)∇ (It0 ◦ φt,0)
)
,(2)

where K : L2 (Ω, R) → V is a compact self-adjoint op-
erator, which, by the construction of V , is uniquely defined
by 〈a, b〉L2 = 〈Ka, b〉V . The indicator function is given by
1[a,b] (t) = 1, t ∈ [a, b] , = 0 o.w.. Thus, the gradient in time
interval [ti, ti+1] is influenced by the images Itj

: j ≥ i, thus
the flow between two image time-points is only influenced by
the images forward or downstream in time.

2.1. Implementation

We implement our longitudinal growth model as an extension
to the LDDMM framework, thus numerical implementation
details can be found in [4]. The derived gradient is discretized
and the update scheme, vr+1

t = vr
t −ε∇vEt, is used to update

the velocity vector fields at iteration (r + 1).
To deal with irregularly-spaced data in time, we discretize

the velocity flow in relation to the time between scans; e.g.
we can represent one month as one discrete time-step, thus
images further apart in time will be represented by a propor-
tional length velocity flow between them. The same strategy
can also be used in the case of missing time-points.

3. EXPERIMENTS AND RESULTS

We performed several different synthetic experiments to show
how our longitudinal growth model can handle irregularly
spaced time-points, interpolate missing time-points, and con-
struct an average growth sequence. We also demonstrate our
model on real medical data, namely, the caudate nucleus in a
Huntington’s Disease patient.
The first experiment involves a dataset consisting of four

sequences of a 3D sphere image (64 × 64 × 64) growing ra-
dially at different rates, with six time-points in each sequence
(the baseline images are the same for each sequence). We
apply the Longitudinal Growth Model for each sequence
to obtain velocity vector field flows, then average these

(a) (b)

(c) (d)

Fig. 1. (a) Four time-series synthetic 3D images showing a
baseline sphere growing at different rates, (b) the average of
these four sequences, (c) the original sequences with some
intermediate samples missing, and (d) the average computed
from these incomplete sequences.

Fig. 2. Four synthetic time-series of images simulating fish
growth; two typical growth sequences via uniform morpho-
logical dilation throughout the body of the template fish are
shown on the left, and two atypical growth sequences with
tail dilated at twice the rate as rest of the body is shown on
the right.

flows across the four different sequences to obtain the ve-
locity vector field that corresponds to the average growth
sequence, and forward integrate to get the average space-
time maps. The velocity vector field was discretized us-
ing 10 time-steps between each image time-point. We also
compute the longitudinal flows where a random 1/3 of the
time-points are removed from the computation. We generate
a ground-truth average sequence using the average sphere
growth rate, and compare that to the average obtained via
the vector space averaging of velocity fields by comparing
spherical volumes at each time-point using the error metric
(1/N)

∑N

k=1 |V (Gtk
)− V (G̃tk

)|/V (Gtk
), where V (Gtk

)

is the volume of the ground truth average sphere, and V (G̃tk
)

is the volumes of the computed average sphere at time tk.
The error for the average sequence computed using all data,
and that from the set with incomplete data as compared to the
theoretical averageis 8.95% and 9.81% respectively. Figure 1
shows the recovered average sequences for both these cases.
In the second experiment, we construct a synthetic dataset

consisting of “typical” and “atypical” growth sequences of 2D
(128 × 128) fish images. We use four different fish shapes
and perform morphological dilations to generate a growth se-
quence of images with four time-points each. For half the fish
shapes, we dilate the tail region at twice the rate to simulate
atypical growth. Figure 2 shows these four synthetic growth
sequences.
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(a) All (b) Typical (c) Atypical

Fig. 3. The final transformation from the average longitudinal
flow for the synthetic fish growth sequences using (a) all four
time-series, (b) using only the typical group, and (c) using
only the atypical group. The inflation in the tail region is
captured in the average of the atypical sequences. Grids are
shown down-sampled for clarity.

We apply the longitudinal growth model to each time-
sequence of images to find the Hilbert-space representation
for each growth sequence. We discretized the velocity field
using 20 time-steps between each image time-point. Figure 4
shows the results of the longitudinal growth model applied to
one of the normal fish growth sequences.
To further demonstrate robustness to missing time-points

as shown in the growing sphere experiments, we apply the
growth model to an atypical fish growth sequence with the
third time-point missing; the resulting recovered image se-
quence is shown in Figure 5 . In this case, 40 velocity field
time-steps were used between the second and fourth time-
point to account for the missing image. As a simple com-
parison between typical and atypical fish populations, we ap-
ply averaging in the Hilbert-space vector fields and generate
the average final maps for the typical, atypical and combined
populations, as shown in Figure 3 .
For testing on real anatomical shape, we applied our lon-

gitudinal growth model to the caudate nucleus of a Hunting-
ton’s Disease patient scanned on five separate occasions over
a six year period. We used expert manual segmentations of
the left and right caudate nucleus, smoothed with a Gaus-
sian convolution filter (mask size: 5 × 5, σ = 1), and dis-
cretized the longitudinal time-flow proportional to the actual
time-between scans as 20 time-steps per year. Segmentations
of the left and right structures are combined into a single im-
age volume (54× 40× 34) with image time-point rigidly reg-
istered to the baseline image. Figure 6 shows the evolution of
the template image along the time-flow and the corresponding
input data.

4. DISCUSSION AND CONCLUSION

Concluding, we have introduced a longitudinal growth map-
ping model which enables a Hilbert-space representation of
time-dependent anatomical evolution in growth and disease.
We have applied it to the mapping of volumetric images, al-
though it can be generalized to other forms of data, such as
landmarks [6], curves and surfaces as well. Our experiments

show the model to be flexible with respect to temporal sam-
pling of images and it is also able to interpolate missing time-
points. The synthetic sphere growth experiment shows robust
computation of average growth even in the absence of a sig-
nificant amount of input data. The synthetic fish growth ex-
periment simulated inter-subject variability in the presence of
two distinct populations. We showed results on real medical
data, the caudate nucleus in Huntington’sDisease, for demon-
strative purposes; we plan to apply our longitudinal growth
model to clinical data in future longitudinal shape analysis
studies involving statistical analysis of growth or atrophy ex-
tending similar methods that used two time-points [7].
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t = 0 t = 9 t = 19 t = 29 t = 39 t = 49 t = 59

Fig. 4. Longitudinal growth model results for one of the typical fish growth sequences, showing one intermediate time-step
computed between each input image time-point. From top to bottom we have the four time-points of the input synthetic data,
the baseline image deformed along the generated longitudinal flow, the deformed grid corresponding to the transformation at
the given time-step, and the the velocity vector fields. Grid and velocity vector fields are shown down-sampled for clarity.

No Image

It0 It1 It2 It3 t = 0 t = 19 t = 39 t = 59

Fig. 5. Longitudinal growth model applied to abnormal fish growth with a missing input time-point (It2 ,t = 39). The input
image sequence (including the missing time-point) is shown in the first row. The baseline image deformed along the longitudinal
flow is shown in the second row; the interpolated image for the missing time-point closely matches the actual image.

It0 It1 It2

t = 0 t = 6 t = 13 t = 19 t = 26 t = 33 t = 39 t = 46

It3 It4

t = 53 t = 59 t = 66 t = 74 t = 79 t = 86 t = 93 t = 99

Fig. 6. Longitudinal growth model results for the Huntington’s Disease caudate nucleus where the subject was scanned five
times over the course of six 6 years; the time-flow is discretized to satisfy 20 time-steps per year. Input shapes are shown along
with the baseline shape as deformed along the flow, colored with |Dφt,0|, with values below 1 indicating localized loss of tissue.
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